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A new roll-type instability has been discovered experimentally. When fluid between 
two closely spaced, parallel plates is oscillated about an axis midway between the 
plates, it exhibits an instability that takes the form of longitudinal rolls aligned 
perpendicular to the axis of rotation. The basic-state oscillatory shear flow, before the 
onset of rolls, may be viewed as driven by the d x i term of the Navier-Stokes equation 
in the oscillatory reference frame. A regime diagram is presented in a parameter space 
defined by the maximum amplitude of angular oscillation, a, and the non-dimensional 
frequency, @ = w d 2 / v .  The equilibrium wavelength of the rolls scales with d, the gap 
spacing between the plates, and it increases as @ increases. Supercritical to a weak-roll 
onset, an abrupt transition to stronger roll amplitude occurs. Photographs of the cell 
after an impulsive start show the roll development and initial increase in roll 
wavelength. A variety of phenomena are observed, including wavelength selection via 
defect creation and elimination, front propagation, secondary wave instabilities, and 
the transition to turbulence. We also present solutions of the Navier-Stokes equation 
for the basic-state shear flow in a near-axis approximation. We develop a simple 
resonance model which shows some promise in understanding the low-a, high-@ 
behaviour of strong rolls. A theoretical analysis of this instability is presented by Hall 
(1994). 

1. Introduction 
We present the experimental results of a roll-type instability in an oscillating fluid 

plane. The basic-state shear flow is oscillatory in nature, and is independent of the 
coordinate in the direction of the rotational axis, except near the boundaries. Near the 
axis of rotation, the basic-state shear appears to be nearly independent of streamwise 
location. The cell geometry and the coordinate system are described in detail after the 
introduction. We observed roll formation with the roll-axis orientation perpendicular 
to the rotational axis, and parallel to the basic-state flow. Typical features of 
instabilities were observed, including secondary wave instabilities, and a transition to 
chaos. We also note that this instability may have industrial mixing applications. 

The initial bifurcations observed in this study are similar to many of the classic 
instabilities of contained flows, such as Rayleigh-BCnard convection, Taylor-Couette 
flow, and roll formation from flow in curved channels. For the experiment reported 
here, the basic-state shear, before the onset of rolls, is periodic in time, with zero-mean 
flow. For an introductory treatment of periodically forced flows, see Drazin & Reid 
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(1981, $48). This subject has been reviewed by Davis (1976). Hall (1994) has recently 
performed a linear stability analysis of the basic-state flow relevant to our study. 

In addition to the work on Taylor-Couette flow as discussed by Davis (1976), the 
torsional oscillation of an immersed cylinder also gives rise to Taylor vortices, as 
studied experimentally by Park, Barenghi & Donnelly (1980), and theoretically by 
Seminara & Hall (1976) and Hall (1981). The classic problem of oscillatory (flat) Stokes 
layers continues to be studied theoretically (Kerczek & Davis 1974; Hall 1978). More 
recent experimental and numerical work on Stokes layers (Akhavan, Kamm & Shapiro 
1991 a, b) provides insight into how a direct transition to turbulence occurs by 
secondary instabilities of a transient state. 

A number of theoretical and experimental papers have addressed the influence of 
rotation on flows through straight ducts and channels. These ‘flow through’ studies 
lack the midplane inflexion point, the oscillatory forcing and the zero-mean flow 
characteristics of the present study, but exhibit many common features of the initial 
bifurcations. When the rotational axis is perpendicular to the direction of the basic- 
state mean flow, rolls appear, which are aligned in the flow direction (Hart 1971 ; Lezius 
& Johnston 1976; Speziale 1982; Kheshgi & Scriven 1985). For larger aspect ratio 
systems, multiple rolls were observed by Alfredsson & Persson (1989). They also 
observed secondary wavy instabilities and turbulence with coherent roll structure. 

The sections to follow are organized in the following manner. In 52, we describe the 
experimental apparatus and methods. The experimental results of $3 begin with a 
discussion of the observed equilibrium flow regimes, which include the basic-state 
shear, the onset of weak rolls, the onset of strong rolls, secondary wavy instabilities, 
and turbulent flow within coherent roll structure. We then describe the wavelengths 
observed as equilibrium states. We also discuss the evolution of structures following an 
impulsive start of cell oscillations. In 94, we discuss the basic-state shear flow present 
before the onset of rolls. Our attention is focused on a ‘near-axis approximation’, 
where the basic-state velocity profile is assumed to be dependent only upon time and 
the coordinate position across the fluid gap. Low- and high-frequency limits are 
developed for the maximum velocity, and its location and phase. We then develop a 
simple resonance model in an attempt to understand the strong-roll onset for high 
forcing frequencies. In $5 ,  we discuss some possible causes for the difference between 
weak and strong rolls. We also discuss relationships to other studies, and suggest some 
extensions of this study. This is followed by concluding remarks in $6. 

2. Experimental apparatus and method 
2.1. Cell geometry 

We shall often refer to the coordinate system as defined here. The z-axis is vertical, 
parallel to the (oscillatory) rotational axis. The y-axis is across the gap, and the 
horizontal x-axis is in the fluid midplane (see figure 1 a). The unit vectors { f , j ,  k] point 
in the (x,y,z} directions. The boundaries of the cell are at x = i-iL,, y = +id,  and 
z = f&,. The gap spacing d is the most important dimension, at least for the aspect 
ratios which have been investigated in this study. Q(t)  is the time-dependent angular 
velocity (0 = a@. The instantaneous angle of the cell from its mean position in 
the fixed laboratory frame is dominantly 8 = -a  cos (ot), which implies that 

= aw sin (wt) .  The presence of smaller-amplitude higher harmonics is discussed 
below. Dimensional analysis reveaIs that the following non-dimensional groups govern 
such flows forced by a single frequency: the amplitude of angular oscillation a ;  a 
non-dimensional frequency @ = od2/v ,  where I, is the kinematic viscosity; and the 
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FIGURE 1. (a) Cell geometry. The experimental cell is a rectangular box with gap spacing d, height L,, 
and width L,. It oscillates about a vertical axis in the fluid midplane. For pure harmonic forcing, the 
instantaneous position of i in the oscillating frame of the cell is oriented at an angle 0 = -acos (wt )  
with respect to the cell's mean position in the fixed frame at 0 = 0. In this perspective view, the cell 
is at 0 = 45", and oscillates up to B = +a = + 90". The angular velocity of the cell is P = O(t) k, with 
D(t) = aw sin (wt). (b)  The arrangement of the mirrors, cell and camera (as looking down from above) 
used for the creation of figure 2(a-c). 

horizontal and vertical aspect ratios: A,  = L,/d and A,  = L,/d. For the cells (table 1) 
and fluids used in this study, we found no resolvable dependence of the equilibrium 
states upon the aspect ratios. The time-dependent evolution after an impulsive start 
was studied only for a single aspect ratio. We note that the phenomenon of roll onset 
does not depend upon the orientation of the z-axis with respect to gravity. We also 
emphasize that the roll axes are perpendicular to the rotational axis. The roll 
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d (cm) L (4 I (m> 
Cell +0.02, -0 k0.05 k0.05 A ,  A ,  A J 4  

1 0.80 27.7 18.0 34.62 22.50 1.54 
2 0.80 27.6 17.5 34.5 21.88 1.58 
3 0.50 35.0 22.5 70.0 45.0 1.56 
4 0.50 17.5 11.25 35.0 22.5 1.56 
5 0.25 8.75 5.63 35.0 22.52 1.56 

TABLE 1. The interior dimensions of the five cells used for this experiment. The gap spacing of the cell 
is d, the length is L, and the width is I (error estimates for these are given at the top). Most of the 
experiments were performed with L, = L, L, = I (cf. figure 1). However, we also did some runs with 
the alternate orientation, i.e. with Lz = L, L, = 1. The flow regime appeared insensitive to such 
changes in orientation to within the resolution attainable. The aspect ratios are A ,  = L/d ,  A ,  = l /d .  
All of the cells had similar values of AJA,.  

orientation in this experiment is then similar to that of Taylor-Couette rolls, i.e. 
parallel to the direction of the basic-state velocity, rather than perpendicular to the 
flow as is the case for the Kelvin-Helmholtz instability. 

2.2. The apparatus 

The cells were made of two glass plates, separated by square-section bars near the 
edges. The perimeter was sealed with glue. Fluids were introduced through a small hole 
between the spacer bars, which could later be sealed. The dimensions of the space for 
the fluid are defined in figure 1 (a). The various cells used in the experiments are listed 
in table 1. Above the motor and linkage, a metal channel supporting a frame was 
bolted to the cell-axis shaft (which oscillated during experimental runs). The cell was 
secured to the metal frame, with the line of the rotational axis in the fluid midplane. 
On the lower edge of the metal channel, a pointer indicated the angular position on a 
circular protractor centred at the cell axis. A variable-speed motor supplied oscillation 
frequencies between 0 and 2 Hz. 

The cell was connected to the motor via a cam linkage. We calculated the cell 
position, relative to an arbitrary reference angle, over a single rotation of the cam. 
Fourier analysis of this result revealed the amplitude and phase of the higher 
harmonics, relative to the fundamental frequency (f’= w/(27c)). The results indicate 
that the first overtone (2f) had an amplitude between 2 and 5 YO of the fundamental 
frequency, with the larger contributions coming from larger a. The next overtone ( 3 f i  
had an amplitude between 0.5 and 2% of the fundamental frequency. Higher 
harmonics had smaller amplitudes, all less than 0.5 YO. 

2.3. Fluids utilized 
Distilled water was the experimental fluid for most of the trials. The flow was visualized 
with a 3-5 YO addition of Kalliroscope solution (AQ-1000), making the particulate 
concentration up to about 0.03 YO. Onset values for strong rolls (described below) were 
also determined with acetone as the fluid, and similar Kalliroscope concentrations. The 
material properties of water were taken from Weast (197 1) and those of acetone were 
taken from Washburn (1928). The phenomena described in this paper are not driven 
by the density difference of the visualization particles and the fluids. This was verified 
by observing the dynamics of a test cell containing a solution of Freon TF with a small 
addition of Kalliroscope PF- 1000 concentrate, where the particles have the same 
density as the fluid. 
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2.4. Exper imen tal method 
An experimental run with an impulsive start proceeded as follows. A voltage level for 
the motor was selected, determining the frequency, and the angle a set. The frequency 
of cell oscillation was determined by timing 10-20 cycles with a stop-watch. After 
allowing the cell to rest until fluid motion ceased, oscillations were resumed. After a 
number of cycles, the oscillation was stopped and the structure of the flow was 
observed and classified. If present, rolls or roll pairs were counted over a measured 
vertical distance. Many repetitions of the above procedure at different stopping times 
then provided distributions of wavelength data similar to figure 5 (although that figure 
was taken from photographs described below). Allowing the cell to oscillate for many 
cycles, until the pattern seemed to be in equilibrium, provided data for the regime 
diagram (figure 3) and the equilibrium wavelengths (figure 4). Figures 3-5 are discussed 
further in the results section below. 

Photographs taken every few cycles, after an impulsive start, provided data such as 
the wavelength evolution (figure 5 )  and the time-dependent flow regimes (figure 2). 
Two mirrors were placed at right angles on a platform around the cell. The cell was 
arranged to have an extremum of the angle 19 while the x-axis was in line with the vertex 
of the mirrors on one side and the camera on the other (as illustrated in figure 1 b). The 
photographs show an edge of the cell between the mirrors, and opposite faces of the 
cell on each mirror. The cell faces near the edge closest to the camera appear on the 
left and right edges (of each part (i-iv)) of the photographs in figure 2(a-c). Slight 
errors in timing the moment of the photographs, in addition to slight mirror tilts, led 
to linear trends in the translation of distances on photographic prints to distances on 
the cell. We corrected for these trends during the wavelength measurements. 

2.5. Error estimates 
We estimate the experimental errors as follows. The gap spacing d, as reported in table 
1, could have an error of (+ 0.02, -0) cm. The angle a was accurate to within f 1". The 
measured frequency was accurate to within 1 YO. We recorded temperatures between 
20 "C and 26 "C, with a mean of 23 "C. The visual observations of onset of weak and 
strong rolls were difficult, and were somewhat dependent upon both the observer and 
the illumination, contributing a possible error of f 10 in cPonsPt. The axis of rotation 
was in the fluid midplane to within f0.05 cm, and was vertical to within 1". In fact, 
the onset of rolls appears to be insensitive to large changes in the axis position, 
provided that the axis is parallel to the fluid midplane and a cell edge. With all 
uncertainties included, the maximum discrepancy between values of @onset of weak or 
strong rolls (discussed in $3) from various observations is on the order of A@ z 20, for 
Q, d 100. An improved experimental design would include better temperature control 
and quantitative roll velocity measurements. 

3. Experimental results 
3.1. Flow states observed 

Several regimes of flow patterns were observed visually. We shall first discuss the 
regimes which persist as equilibrium states. The results for the onset of rolls were 
independent of the aspect ratios of the cells within the resolution attainable. Later we 
shall discuss the pattern evolution after an impulsive start from a rest state. 
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FIGURE 2(a,b). For caption see facing page. 
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(iii) 

(ii) 

FIGURE 2. Photographs of evolution after an impulsive start (d = 0.8 cm, fluid: water with 
Kalliroscope visualization, cell 1, orientation Lz = L). Four views of the cell are shown with time 
increasing from (i) to (iv). Each part shows both sides of the cell, reversed as the view was in mirrors 
at right angles, with cc = 90'. At the moment the photographs were taken, the instantaneous angle, 
0, was near an extremum, 19 zz f a .  The notable trends are as follows: For larger @, the initial onset 
wavelength is smaller, but the final equilibrium wavelength is larger. The progression to an 
equilibrium state is more rapid for larger @. The number of cycles which had past after the impulsive 
start when the photograph was taken is denoted m. Wavelength evolution measured from these and 
other photographs in the sequence is shown in figure 5 ,  which also identifies the observed states. 
Centimetre-scale graph paper is visible at the edges of the cell. (a) @ = 72.6: (i) m = 4, (ii) m = 10, 
( 5 )  m = 192& (iv) m = 334. (6)  @ = 126.0: (i) m = 2, (ii) m = 4, (iii) m = 23;, (iv) m = 98. (c) 
@ = 400.7: (i) m = 4, (ii) m = 6;, (iii) m = Sa, (iv) m = 104. 

3.1.1. Onset of weak rolls 
For sufficiently small values of the frequency parameter @, or the angle a, no pattern 

could be observed in the dilute Kalliroscope solution. This is indicative of a pattern 
independent of z ,  and corresponds to the basic-state oscillatory shear flow (discussed 
further in $4). For somewhat higher values of @ (or a), horizontal striations appeared, 
indicating the onset of weak irregular rolls (0). The symbols shown in parentheses are 
those which are used in figures 3--5. With greater forcing, the rolls increased somewhat 
in amplitude. This pattern of weak rolls was observed both with (0) and without (0) 
defects. The weak roll pattern is similar to what appears in part (i) of figure 2(u-c). 
When no defects were present, the roll pattern generally appeared uniform across the 
width of the cell, except near the lateral boundaries, lending support to the use of the 
near-axis approximation (also discussed in $4) for a stability analysis of the basic-state 
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FIGURE 3. @-a regime diagram for weak and strong rolls: the non-dimensional frequency, @ = w d 2 / v  
versus the angle a (in degrees). The various symbols represent different flow states observed visually 
for five different cells (see table 1) and two different fluids (water and acetone). The grey curves show 
roughly where flow states are separated. Below the lower curve (and below some of the smallest 
circles), no structure could be observed in the cell, indicative of a nearly homogeneous basic-state 
shear flow. The symbols are as defined in $3.1. The weak roll state was observed in the region WK. 
Straight strong rolls (S) and strong rolls with laminar wavy modes (WV) occur with greater forcing. 
For larger @, we observed wavy modes of several wavelengths (MWV) and turbulence with coherent 
roll structure (T). The distinction between MWV and T states, near the upper curve, was not clear, 
whereas the distinction between MWV and WV was somewhat clearer. The middle curve separates 
WK from S upon increasing @. A curve also connects the data points where strong rolls disappeared 
upon a decrease of @( +, hysteresis). 

shear profile. The wavelengths observed in the equilibrium state are displayed in figure 
4, as discussed in $3.2. 

3.1.2. Strong rolls, wavy mode and transition to turbulence 
For greater forcing, an abrupt increase in the amplitude of the rolls was observed, 

often accompanied by a longer-wavelength state. The onset of strong rolls upon 
increase of @ is indicated by (O), whereas laminar strong rolls supercritical to onset 
is indicated by (0). It was clear that the strong rolls were associated with fluid motion 
through the fluid midplane ( y  = 0). Neighbouring rolls turned in opposite directions, 
so that the zero-frequency (temporal mean) component of fluid motion in the rolls (12,) 
possessed vorticity either in the positive or negative i-direction (V x Go 11 i). Hall’s 
(1994) linear stability analysis predicts well the onset of the strong-roll regime (curve 
T1 of his figure 3). At times the strong-roll state initiated from the top and/or bottom 
of the cell, and moved as a travelling front ( #), consuming the weak-roll state, and then 
persisted throughout the entire cell. The existence of such a travelling front suggests 
that the onset of the strong rolls may be associated with a subcritical bifurcation. 
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Indeed, we did observe hysteresis of the strong-roll state for a 5 90". We indicate the 
disappearance of the strong-roll state upon decrease of @ by (+) in figure 3 .  As was 
the case for the weak rolls, the strong-roll state was observed both with and without 
defects. The pattern of strong rolls with defects is similar to that displayed in figure 
2(a)(ii). When no defects were present, the rolls appeared to have a nearly constant 
amplitude across the width of the cell. Wavelength adjustments often took place by the 
creation and elimination of defects, as discussed further below. 

For somewhat stronger forcing, the roll state lost its lateral homogeneity and gave 
rise to a wavy instability (a) (with wave vector in the x-direction). The pattern is 
similar to figure 2(a)(iii) and (iv). The locations in the @-a parameter space for which 
defects and wavy instabilities occurred must, of course, depend on the roll wavelength 
present. The wavelength present is itself influenced by the quantization of the rolls, due 
to finite boundaries in the z-direction. For even greater forcing, the once-laminar wavy 
rolls became more irregular, with several superimposed wavy modes ( 0 )  (cf. figure 
2(b)(iv)). It appeared that a somewhat turbulent state could exist, superimposed on a 
wavy-roll state. The wavelength of the wavy instability generally decreased as @ 
was increased. For the highest forcing, we observed a very turbulent state (a), 
superimposed on a well-defined roll structure (cf. figure 2(c) (iv)). With the exception 
of the distinction between the weak- and strong-roll states, this series of transitions is 
reminiscent of the typical flow regimes observed in Taylor-Couette flow (see Coles 
1965; Fenstermacher, Swinney & Gollub 1979; Koschmieder 1979). It also appears 
that there may be an onset of turbulence coincident with the onset of strong rolls for 
large @ and small a (possibly around @ = 700 and a = 43), although further 
experimental work is necessary to resolve this. 

3.2. Preferred equilibrium wavelengths 
The equilibrium wavelengths observed are presented in figure 4. After equilibrium was 
obtained, the oscillation was stopped and the rolls or roll pairs remnant in the 
Kalliroscope visualization were counted over a measured distance. There was at times 
an ambiguity concerning whether one was counting rolls or roll pairs for the weak-roll 
regime. This could introduce a factor of 2 error in some of the low-@, small-h/d, weak- 
roll data points in figure 4 (some of the small wavelengths possibly should be doubled). 
In general, larger wavelengths were observed for larger values of @, with some overlap 
between adjacent regimes. A similar tendency for increase in wavelength with stronger 
forcing has also been observed in a number of flow regimes, including Taylor-Couette 
flow and Rayleigh-Benard convection. The wavelengths for onset of the strong rolls 
appear to be well captured by Hall's (1994) linear stability analysis (cf. curve T1 of his 
figure 4). 

We also observed hysteresis in the equilibrium wavelengths, especially in the straight, 
strong-roll and wavy regimes. Upon a gradual increase in @, with a fixed, the 
wavelengths tended to increase (by creation and elimination of defects) along a 
particular path in (A/+@ space. Upon gradual decrease in @, the wavelengths would 
decrease, but would maintain a higher wavelength than the path followed during an 
increase of @. It would be possible to establish the stability boundaries separating 
straight-laminar strong rolls and wavy rolls by examination of such behaviour . 

3.3. Front propagation 
Travelling fronts of strong rolls consuming weak rolls were observed in several regions 
of the @-u parameter space. This was typical for large increases of the driving 
frequency, and impulsive starts, but was also observed upon extremely small increases 
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FIGURE 4. Final equilibrium wavelengths : the wavelengths non-dimensionalized by the gap spacing are 
shown for various values of the frequency parameter @ = w d 2 / v .  This figure contains results for all 
investigated values of the angle a. The symbols and letters indicating the observed regimes are defined 
in $3.1 and figure 3 .  Note that the general tendency shows larger equilibrium non-dimensional 
wavelengths for larger forcing, while there is some overlap between each regime. The curved 
enclosures serve only to separate the observed regimes. The h / d  > 3 of the weak-roll state near 
@ = 40 were for large a(cc = 217;). The long-dashed line is 27t8,/d, where 8, is the Stokes-layer 
thickness (note that cS,T/d = (2/@)9. We include this curve for reference; but it is not as relevant as 
the solid curve (45/d) or the short-dashed curve (8 l /d ) ,  especially for small @. These scalings for h/d 
at onset are discussed further in $4.4. In $3.2, we note a possible factor of 2 ambiguity in the low- 
@, small-wavelength data points for the weak-roll regime. The proper resolution of this ambiguity 
may shift some of the clustering about the 45/d curve to about the 85/d curve. 

in @, transcending the strong-roll onset. This indicates that the strong-roll onset may 
contain regions governed by a subcritical instability. For purposes of comparison to 
future studies, we report that the speed of the propagating strong-roll front was 
0.0875 cm-' s for @ = 92.4, 01 = 60" (cell 1, orientation: L, = L, fluid: water). 
Hysteresis was not detectable for 01 2 90". 

3.4. Structure and wavelength evolution after an impulsive start 
Photographs were taken at various moments following an impulsive start from a rest 
state (figure 2). End effects are apparent in this photo-sequence. For low @, a strong 
roll was sometimes present at the top, and another at the bottom. This feature was 
often observed both in the weak-roll equilibrium state and during the transient weak- 
roll state after an impulsive start. Part (i) of each of figures 2(a)-2(c) shows a stronger 
roll at the top and bottom soon after an impulsive start. Also, lateral inhomogeneity 
is quite apparent in the high-@ sequence (figure 2(c)(i) and (ii)), where the rolls grew 
somewhat more quickly near the lateral edges than in the centre. We note, however: 
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FIGURE 5. Wavelength evolution after an impulsive start : the wavelength, non-dimensionalized by the 
gap spacing d, is shown as a function of m, the number of cycles after an impulsive start. The interior 
symbols 1, x , and +, correspond to @ = 72.6, 126.0 and 400.7, respectively. All of these cases are 
for LY = 90". Several photographs of the sequence from which these wavelengths were measured are 
shown in figure 2. For low m, the boxes with rounded ends correspond to the flow pattern 
characteristic of weak rolls. By m = 7, all cases shown here exhibited strong-roll characteristics. The 
other symbols are as defined in 53.1. The range of wavelengths observed is indicated by the vertical 
extent of the box. The grey lines serve only to connect points of observation. For the laminar wavy 
state, wavelength adjustment took place by discrete jumps, through the creation and elimination of 
defects, as is apparent for CJ = 72.6 with m between 200 and 300. The small shaded rectangles near 
the left axis indicate the range between 4g/d and 85/d for each of the runs (cf. $4.4). (See figure 2 
caption for cell number and orientation.) 

that the final equilibrium state for all three cases exhibits a laterally homogeneous 
pattern, except for the presence of wavy instabilities or turbulent motion superimposed 
upon the persistent roll state. 

The wavelength evolution after an impulsive start is shown in figure 5 .  These 
wavelengths were measured (along typically 4 or 5 equally spaced vertical lines) from 
a series of photographs, some of which are presented in figure 2. Special care was taken 
to correct for the linear trends arising from mirror tilt and cell phase (not all 
photographs were taken precisely at 8 = &a). There was certainly a larger distribution 
of wavelengths present in each photograph than could be measured by this technique. 
A two-dimensional Fourier analysis would show this, but it would also contain 
features peculiar to the Kalliroscope visualization. We have not investigated the 
possible influence which a variable aspect ratio may have on the rates of wavelength 
adjustment . 

The initial wavelength selected is small when the driving frequency is large, in 
accordance with the small Stokes-layer thickness for large @ (although a more relevant 
measure is, 5, the distance between the wall and the location of U,,, : see $4. l), but the 
final wavelength is large for large @. The high-wavelength, coherent-roll structure of 
the turbulent state has also been observed in Taylor-Couette experiments. 

In the laminar-wavy regime, wavelength adjustment took place by the creation and 
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elimination of defects. For a constant forcing frequency, wavelengths would not 
decrease (although they could decrease upon a decrease of @). What we now describe 
was observed during an increase of wavelength. The amplitude of the wavy instability 
appeared to grow slowly in amplitude, until a defect was nucleated near the cell edge 
(say near x = +$L,). Soon afterwards, another defect would appear on the other cell 
edge (near x = -&) on the same roll pair. A series of defect glides would occur so as 
to propagate the defects toward the upper (or lower) cell boundary. The roll 
wavelengths throughout the cell gradually relaxed to a larger value as a roll would be 
eliminated at the top (or bottom) of the cell. 

4. Basic-state shear in the near-axis approximation 

rolls. 
4.1. Analytical form of the velocity profile 

The equations governing the flow of an incompressible fluid in the oscillatory rotating 
frame are 

In this section we address the oscillatory basic-state shear flow before the onset of 

) (1) 

au VP -+ u .  vu+ 252 x u +- - YV2U + $2 x (a x r )  +si x r = 0, 
at P 

v - u  = 0, 

where u is the fluid velocity. The position vector from the origin is r,  p is the fluid 
density, v is the kinematic viscosity, p is pressure, Q(t) is the time-dependent angular 
velocity (52 = i lk ,  and si = (aa/c?t)). The si x r term in the momentum equation has 
been called the ‘Euler force’ by Lanczos (1970). In what follows, refer to the coordinate 
system as defined in 92.1. For pure harmonic forcing, we may choose the instantaneous 
angle of the cell from its mean position in the fixed laboratory frame as 8 = -a cos (wt), 
which implies that SZ = 010 sin (wt) (cf. figure 1 a). The balance of gravitational forcing 
with a hydrostatic pressure distribution, for constant-density fluids, has been already 
removed from (1). 

The basic-state shear velocity in a finite box is a function of all three spatial 
directions and time. In a cell with infinite vertical extent, but finite boundaries in the 
x- and y-directions, it would depend only upon x, y and t. As the gap spacing, d, is 
much smaller than the width of the cell, L,, the flow near the centrally located 
rotational axis is primarily in the k x-direction, with IC?u/2yl + lau/axl. This suggests a 
model for the basic-state shear velocity near the axis in which we write 

u = iU(y,  t) .  

Visual observations of particle advection in the basic-state shear support this 
assumption, as does the nearly x-independent structure of the rolls after their onset. In 
what follows, we refer to the simplified form of the velocity profile with au/ax = 0 as 
satisfying the ‘near-axis approximation’. 

We seek a solution for the basic-state flow of the form u = iU(y,  t). We make this 
substitution, and operate on the momentum equation (1) by f . V  x to yield 

where subscripts represent partial derivatives. Rigid boundary conditions are imposed 
at y = f b, where b = id. We substitute 

U = F(y) exp (iwt) + F*(y) exp (- iwt) 
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FIGURE 6 .  Analytical solutions for the basic-state shear velocity in the i direction, for various values 
of the non-dimensional frequency parameter @, in the 'near-axis approximation' of 34.1, in the 
oscillatory reference frame. In (a-d), the abscissa is the modified velocity % (41 = U/awd, with Ufrom 
(3)). The ordinate is the cross-gap position y ,  = y /d .  Each part shows the velocity profiles for five 
different phases of the flow, starting with the solid line, and progressing to lines with longer dashes. 
We have chosen the phase such that Q = awsin(wt); and the five phases correspond to wt = m/4, 
with n = 0 to 4. The phases n = 5 to 7 (not shown) are mirror symmetric about 4 = 0 to phases 1 
to 3. In all cases, there is an inflexion point at y = 0. Additional inflexion points may occur at other 
locations and are phase dependent. (a) @ = 10, (b) @ = 40, (c) @ = 100, (d )  @ = 1000. (e) Contours 
of the modified velocity $Y, for @ = 1000. The abscissa is the non-dimensional time (ot) divided 
by n. 
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into (2), where the asterisk denotes the complex conjugate. We find that 
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where g = (iw/v);. In terms of real quantities, the solution is 

2awb 
O(y, t )  = 2awy sin (wt )  + 

Gosh (27 )  - cos (27) 

x (cosh ( y )  sin (7) ( - e-f12, cos (,8y - wt)  + gY cos COJi + wt)) 

+sinh(y)cos(y)(-e-flYsin(py-wt)-eflYsin ( /?y+~t ) ) } .  (3) 

Here, ,!? = (w/ (2v) ) i  and y = bp. Note that the factor p is the inverse of the oscillatory 
Stokes-layer thickness (8, = (2v/w)i)  and that y is related to the frequency parameter 
CD by 8y2 = @. 

The solution for the basic-state velocity profile in the near-axis approximation 
contains a wealth of information, It may be used to define a Reynolds number and to 
serve as a basic state for an analysis of stability. The velocity used in the definition of 
a Reynolds number for this oscillatory problem could be Urn,,, the maximum absolute 
value of Uover all phases and all relevant values ofy. Also of relevance is 6, the distance 
between the wall and the location of Urn,% (i.e. [ = d(+-yrn), where yrn is the non- 
dimensional y-location of the maximizing velocity). We shall use the gap spacing d as 
a lengthscale and w-l as a timescale. Here we define a modified velocity 42 = U/(awd), 
which is the non-dimensional velocity divided by the angle a. In this form, the modified 
velocity % only depends upon @ and the non-dimensional time and distance, t ,  = wt  
and y ,  = y / d .  Note that %! is independent of a. (This 4% is identical to u of Hall (1994, 
equation (2.8))) Figure 6 shows the y N  dependence of 42 for various values of the phase 
t,. We define Re" = Urnazd/v ,  so that Re" = In figure 7, we show how &,,, 
depends upon @, as well as the values of the non-dimensional time and distance for 
which the maximum velocity is achieved ( t ,  and y,-calculated from (3) using a 
parabolic fitting routine in both t ,  and y,). By symmetry, we may restrict our attention 
to 0 < y ,  < $ and 0 < t, < n. Similar maximal absolute values will occur for negative 
values of y N  and phase shifts of n. 

The average kinetic energy per unit mass for the basic-state shear in the oscillating 
frame is 

Here, r is the period of cell oscillation and V is a volume of integration. We may use 
the x- and z-independence of the basic state, and the non-dimensionalization described 
above, to find that K = (awd)'$/4n, where 

If we scale the velocity by U,,,, we may write K = $PO;,,. The form factor P depends 
upon the time-dependent structure of the velocity field, and it ranges between 0.16 (for 
low @) and 0.26 (for high @). In figure 7, we also show the dependence of $ upon @. 
If we had scaled the velocity by the root-mean-square velocity, u,,,, the form factor 
would be 1, but vrm8 would still be dependent on @, 
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FIGURE 7. The @ dependence of @mar, ywA, tT,' and 2: am,, is the maximum of the modified velocity 
(% = o/(awd)) over the phases 0 6 t, = wt < 7~ and over locations 0 d y ,  = y/d < +. The phase of 
t ,  for which the velocity achieves its maximum is t,, and y ,  IS  the corresponding location of y N .  The 
non-dimensional kinetic energy, 3, is as defined in equation (4). The dashed curves are, respectively 
with longer dashes, %,,&,,,, yTb, t ,  and 2. These were calculated numerically using the velocity solution 
given in ( 3 )  The truncated solid curves are the low- and high-frequency limits, from (6) and (8). 

4.2. Lowfrequency limit 
The limits of high and low dimensionless frequencies provide simplified forms for %. 
These forms will be useful for comparison to future experiments which span a wider 
range of parameter space, and for asymptotic stability theories. For low frequencies, 
after expanding for small y (recall that 8y2 = @), we find that 

0 2 low = y2(?jy - ; l j 3 )  cos ( t )  + y$(&y - i y 3  + guy5) sin ( t )  

+ y 6 ( - z  += 3 16 5 
945y  lS5y -aY +$%y7)c0s (l) ,  (5 )  

where we have dropped the subscripts, but both t and y are to be understood as the 
non-dimensional quantities t ,  and yhT. (The lowest-order terms correspond to Hall 
(1994, equation (2.11)).) We also find that 

t ,  = t,?: Y m  = yo+y4y4, (6% b)  

where t ,  and y ,  represent the phase and non-dimensional cross-gap location for 
which the maximum velocity 42Erz is achieved in the interval 0 < y < and 0 < t < 7c. 

In $84.2 and 4.3, all times and locations are non-dimensional. Hxe,  yo and y ,  were 
determined from the condition that c?%/ily = 0 at orders y2 and y6, respectively; and 
t ,  was found from the condition that M / a t  = 0 at order y4 ( y ,  = 1/(12);, 
y ,  = 17(3)$/85050, and t, = i). For @ + O ,  we have E+d(+- 1/(12)9. Figure 7 shows 
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how the actual t ,  and y ,  correspond to values calculated from the frequency limits. 
The low-frequency limit used by Hall (1994) diverges from the actual values more 
rapidly than the low-frequency limit shown in figure 7 .  

4.3. High-frequency limit 

For high frequencies, again dropping the N subscripts, we find that 

%high = 2y sin ( t )  - ey(2g-1) sin (y(2y - 1) + t )  = (1 - E )  sin ( t )  + e-" sin (ey - t ) ,  (7) 

where E = 1 -2y. (This 4?lhiqn is equivalent to Hall (1994, equation (2.10)).) In order to 
find the modified velocity maximum, over all phases and positions, we must satisfy 
a%/c?c = 0 and a%/at = 0 simultaneously. We again let t ,  and E ,  represent the phase 
and location which satisfy the above conditions for an extremal velocity, as in $4.2. For 
large 7 the limiting forms of t ,  and E ,  are 

- €1 €2 

Y Y Y  
t , ,  = to+-, t ,  6, - -+3, 

where to, t,, el, and e2 are constants to be determined. We obtain 

El - t, = in, from 9%/ae = 0 at O(y);  
cos(e,-~x)-~(2)+e-~~ = 0, from a%/at = o at o(I); 

sin(t,) +el cos ( to)  

$(2); e-ci - sin ( to)  ' 
t ,  = from a%/& = 0 at O(1); 

e2 = t ,  - ;(2);(e'l sin (to)), from ?&/at = 0 at O(l/y). 

The O(1) condition from a%/& = 0 may be solved for el by Newton-Raphson 
iteration (el = 2.284 102297 39 . . .>, while the other constants may be evaluated 
algebraically. The value of %::: is obtained by evaluating %high at t ,  and em, i.e. 

(8 c) 

Both the high- and low-frequency limits are displayed in figure 7. Note that the Stokes- 
layer thickness, 8, = (2v/w)+, does not correspond to the distance [. In the high- 
frequency limit, to order l/y, we have [ = 4q  6,. 

q p i q n   ma^ = (1 -~,)sin(t,)+e-'~~sin(e,y-t,). 

4.4. Simple resonance conditions 

For moderate to high @, the strong-roll state may be associated with resonance. This 
was suggested by an apparent synchronicity of the roll turnover time with the period 
of the forcing (observed visually). A simple scaling analysis will yield conditions for 
resonance. Our primary requirement is that sufficient kinetic energy should be available 
in the basic state from which a resonant roll may be driven. Resonance occurs when 
the roll turnover time equals the period of cell oscillation. For a resonant roll to exist, 
the kinetic energy associated with the roll cannot exceed the kinetic energy of the basic 
state. For this we write K 2 A ,  k,, where K is defined in $4.1, and A ,  is a constant of 
O( 1). Formally, we define KO to be the average kinetic energy per unit mass of the zero- 
frequency component of the roll velocity (we retain the near-axis approximation and 
use u = U+ I?, where 6 contains both the time-periodic and zero-frequency components 
of the perturbation roll velocity). The zero-frequency component of the roll velocity is 
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103 , 

FIGURE 8. Resonance conditions with data: the data of figure 3 are displayed with the resonance 
conditions of 44.4 (equations (9)), for various values of A, (larger A, yield curves with larger a). The 
inset shows the ( y ,  z )  cross-section of a roll. The short-dashed curves are from the [RS] model for 
rectangular strong rolls, with A ,  = 0.5, 1.0 and 1.5. The curves with long dashes are from the [SS] 
model for square-section strong rolls, with A, = 0.5, 0.75 and 1.0. 

where 7 is the period of the forcing, 7 = 2 x / o .  We define 

A full nonlinear simulation with rolls would be required to give the actual velocity 
field. In general we may write KO-= ~ ~ o ' , z ,  where f i  is a form factor dependent upon 
the actual velocity structure, and v" IS a chosen velocity scale for the roll velocity in the 
y-direction. We have calculated f i  for a variety of velocity structures; it ranges between 
0.4 and 1. This form factor is larger than that of the basic state, partly due to the lack 
of time dependence in ii,. In lieu of the actual velocities, we adopt the simplest velocity 
field which conserves mass and captures the structure of a roll. First to be considered 
is the structure shown inset in figure 8. The distance from a lateral edge to the nearest 
triangle vertex is B, and the vertical extent is half a wavelength (+A). In each section of 
such a roll, we assign a magnitude of average velocity components, with the y -  and z- 
components of the velocity being B and G. To conserve mass we must have 
15 = AE/(4B). With this crude approximation, we calculate z0 for the rectangular 
strong-roll [RS] shape inset in figure 8. This somewhat overestimates 8 (and I?,,) 
compared to what the correct (unknown) velocity field would yield. We first suppose 
that the wavelength scales with the distance between the cell edge ( y  = b) and the y -  

- 
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location for the maximum velocity ( y m  d )  in the form h = 4[ (recall that [ / d  = $-- ym). 
For this scaling, we also choose B = 26, which has the effect of making the centre of 
the region of vertical motion coincident with the region of maximum velocity of the 
basic state. The [RS] model then yields 3;" = +E2 (1 - 3[ /2d)  and TRRS = 2d/C, where 5 
represents an average turnover time for the roll. For resonance, we would have 5 = 7, 
T being the period of cell oscillation. We use iT = ( a ~ d ) ~ X / 4 7 ~ ,  from 54.1 just above 
equation (4), and the condition jT2 A,Z,, to yield a resonance condition for 
rectangular strong rolls of the form 

The equality of this condition is shown in figure 8 for several values of A,, along with 
another criterion developed below. For @ 2 100, the onset of strong rolls occurs near 
A ,  = 1. For lower @, where viscous effects would be more important, this criterion 
diverges rapidly from the experimental onset of strong rolls. Whether such resonance 
actually exists cannot be known until further experimental or numerical studies are 
completed. 

Strong-roll resonance with square [SS] cross-section ( A  = 2d) may be modelled using 
B = id .  After evaluating as described above, we find that Ef" = $Z2, with 7'' = 2d/$,  
and 

2A Xa2 3 -3 [SS]. 
7T 

Again, figure 8 shows that A, = 1 is in rough agreement with the experimental strong- 
onset data for @ 2 100. These strong-roll resonance models predict a small angle cut- 
off, i.e. an angle ar. below which no resonate rolls may be observed. (A longer 
wavelength rectangular [LRS] model with h = 8< and B = 2< leads to the same 
resonance condition as [SS] above.) The h = 46 and h = 86 curves are included along 
with the wavelength data in figure 4. We emphasize that full nonlinear simulations are 
necessary in order to fully understand the onset and growth of the observed rolls. 

5.  Discussion 
5.1. Weak versus strong rolls 

The presence of weak rolls as the initial bifurcation from the oscillatory basic-state 
shear flow, and the subsequent bifurcation to a strong-roll state upon further increase 
of @, remains difficult to explain. Quantitative measurements of fluid velocities in the 
rolls would help shed light on this issue. However, such measurements may be difficult 
to obtain, given the oscillation of the cell. An analysis of stability of the basic-state 
oscillatory shear flow may also help distinguish different preferred states, although, 
given the apparent subcriticality of the strong-roll bifurcation for ar. 5 90°, a linear 
stability analysis may fail to resolve this issue. A full numerical solution for the 
nonlinear problem would be revealing, but is a formidable undertaking. Hall (1994) 
has addressed the linear stability in an asymptotic analysis. He maintains that the weak 
onset is associated with end effects. 

Possibly, the weak rolls exist due to the higher harmonics introduced by the 
mechanical linkage. The plausibility of this is supported by the fact that the weak-roll 
onset occurs at a value of @ roughly half of that for strong-roll onset. There is also the 
possibility that the weak rolls are just the lower-amplitude branch of an imperfect 
bifurcation with a subcritical bifurcation to the strong-roll state (cf. bottom of figure 
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111.9 of Iooss & Joseph 1980). Visual and photographic observations of the strong-roll 
state make it clear that the strong rolls have fluid motion through the fluid midplane 
(y = 0). Although weak rolls with small a do not penetrate through y = 0, we do not 
know if this also holds for the weak rolls at large a. It may be that the strong- and 
weak-roll differences may be due to differing structures. 

5.2. Relationships with other studies 
We have found no other studies which discuss the roll development in the oscillating 
cell; however, Hall (1994) has recently performed a linear stability analysis which 
appears to capture the strong-roll onset. The basic-state shear is oscillatory in nature 
with zero mean flow. We chose an oscillatory reference frame for the derivation of the 
velocity profile, because of the simplicity of the boundary conditions. In this frame, the 
maximum velocities occur in the fluid interior. An analysis in the fixed, laboratory 
frame would yield maximum velocities at the boundaries ( y  = +id) ,  as is the case for 
oscillatory Stokes layers. 

As the basic-state shear is simply linear in a, both instantaneous and time-averaged 
inviscid stability criteria would yield neutral curves independent of the angle a (in the 
near-axis approximation). As viscosity may be stabilizing or destabilizing, the 
relevance of inviscid criteria is questionable for this problem. Also questionable is the 
validity of the quasi-static assumption, as the timescale for roll growth appears to be 
comparable with the period of oscillation. Rayleigh-type criteria have been developed 
for oscillatory shear layers without cell rotation or curvature of the flow (Kerczek & 
Davis 1974). This study does not appear to be applicable to the oscillating cell. 

Most studies of oscillatory Stokes flows have concentrated on the regime where the 
Stokes-layer thickness, S,, is considerably smaller than the y-distance to any other wall. 
In our study, we have focused on the regime where 2n:6,/d and 4x5/d are order 1 (as 
is shown in figure 4). The limit of small d,/d would occur for much larger values of @ 
than we have investigated. 

Unidirectional flows influenced by rotation may also give rise to roll-type structures, 
as cited in Q 1.  The roll orientation parallel to the basic-state flow and some of the initial 
bifurcations we report are similar to the large-aspect-ratio study of Alfredsson & 
Persson (1989). The generalized Rayleigh discriminant of Mutabazi, Normand & 
Wesfried (1 992) would yield an instantaneous stability criterion independent of the 
maximal angle a, and is thus not a relevant criterion for this oscillating cell. 

We have already emphasized that the roll-axis orientation is parallel to the basic- 
state velocity, as is the case for rolls in Taylor-Couette flow. This is in contrast to the 
most unstable roll-type mode of the Kelvin-Helmholtz instability, where the roll axes 
are perpendicular to the basic-state velocity. Apparently, when a potentially 
destabilizing body force is present (not present for the Kelvin-Helmholtz case), the roll 
orientation parallel to the flow is preferred. In this study, centrifugal, Coriolis, Euler, 
and inertial forces are potentially destabilizing; Hall maintains that the Coriolis force 
is responsible for the roll-type instability. Rayleigh-Btnard convection with shear 
imposed also favours roll development parallel to the flow: the body force is from 
buoyancy. We have been unable to find a general theory regarding such roll orientation 
preferences in the literature. 

Most of the phenomena described here exhibit features in common with numerous 
flow regimes. These include roll onset, secondary wavy instabilities, wavelength 
adjustment by propagation of defects, front propagation, hysteresis, and coherent 
structure in turbulence. An increase in equilibrium wavelengths with increased forcing 
has also been observed in a variety of flows. 
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5.3. Some possible extensions of this study 
A number of interesting extensions of this experiment are possible. We have noted that 
the location of the neutral curves are relatively insensitive to the aspect ratios ( A ,  and 
A, of 42.1). For very large aspect ratios, we expect that the neutral curves will remain 
the same, but that the roll pattern may weaken far from the axis. If A ,  = 1, we do not 
expect any roll development, owing to symmetry considerations. 

Roll development appears to be crucially dependent upon the oscillation of the cell. 
However, rolls do develop with a superposition of oscillations and mean rotation 
(6’ = at-acosot). If a 2 ao, the cell always rotates in the same direction. Even so, 
rolls still develop. An experimental study along these lines may reveal how mean flow 
and mean Coriolis forces affect roll development. 

Consider a long cylindrical tube of radius R. If such a tube is subjected to oscillatory 
rotation, with the rotational axis perpendicular to the axis of the cylinder, a single 
strong roll develops. (This roughly corresponds to L, = R and d = R.) An interesting 
feature of this configuration is that, depending on initial conditions, we have 
sometimes observed a section of the tube with a laminar roll turning in one direction, 
in contact with a laminar roll turning in the opposite direction. The front (located at 
some value of x) between these two rolls is typically turbulent. We have not examined 
the regime diagram for this configuration, nor have we characterized the motion of the 
front that is sometimes present. 

6. Concluding remarks 
Fluid instabilities exhibit symmetry breaking of collective modes throughout the 

initial bifurcations from some initial state. If the basic state is independent of time, a 
linear stability analysis may be capable of capturing the neutral curve for the first 
symmetry-breaking mode, so long as the bifurcation is supercritical. Subcritical 
instabilities arc not well described by linear theory, as they arise from finite-amplitude 
disturbances. A typical scenario for the initial bifurcations involves onset, growth 
governed by nonlinear processes, and successively more complicated (and less 
symmetric) modes. The linear stability analysis of the basic state invokes Floquet 
theory in a similar way as did Seminara & Hall (1976). As noted above, Hall (1994) has 
performed a linear stability analysis in the near-axis approximation. 

A simple device may demonstrate the entire sequence of bifurcations, from the initial 
onset of low-dimensional structure, to coherent structures in turbulence. An oscillatory 
shear flow provides a basic state from which roll-type instabilities occur. The nonlinear 
growth of the rolls exhibits wavy instabilities of the rolls. Many of the features 
observed appear similar to the initial bifurcations in Taylor-Couette flow. 
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